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A generalized exact renormalization group equation is obtained by using a new 
rencrmalization procedure. This equation does not contain redundant operators 
and therefore enables one to avoid using an uncertain procedure for their 
exclusion. 
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The renormalization group (RG) is now the most effective tool for the 
investigation of critical phenomena. It allows one to develop various 
approaches which use different kinds of perturbation theory, such as the 
e-expansion, (11 the expansion in the inverse component number of a vector 
order parameter, (2'3) the expansion in coupling constants in three-dimen- 
sional space, ~4'5) and others. Critical exponents with a very high degree of 
accuracy were obtained using these approaches, c~ 8) Besides the approaches 
mentioned, some approximation schemes which do not use a perturbation 
theory have also been developed. (9-12) Most of them explore the exact RG 
equation obtained by Wilson (13) (see also refs. 14, 15). These approaches as 
well as ones based on a perturbation theory have led to very good values 
of critical exponents. (~6) Another important advantage of using exact RG 
equations is that they may be useful for the foundation of perturbation 
methods used in RG theory. 
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In this paper we obtain a generalized exact RG equation. This equa- 
tion contains an arbitrary function which can be used to eliminate redun- 
dant operators, to introduce a small parameter for the equation, to simplify 
the initial Ginzburg-Landau-Wilson functional, etc. The equation obtained 
can serve as a basis for constructing new approximation schemes in the 
theory of critical phenomena. One of these schemes, using the exponent t/ 
as a small parameter, was developed in ref. 17. 

Let us consider the Ginzburg-Landau-Wilson functional for a transla- 
tionally invariant isotropic system, 

H I [ ~  ] = ~ 21-2k f gk(ql, q T ; ' " ;  q k ,  qE)(27~)  d 

k=O o ql ,qi ;...;qk,ql.: 

x3 (q~+q~) I~[ (~(q,)'~'(qi)) (1) 
i = 1  i = 1  

where ~ is an n-component vector, the vertices gk(ql,qi;.. .;qk, q~) are 
invariant with respect to permutations of any pairs of momenta qi, qz and 
qj, qy with each other and among themselves, 

fq f daq 3(q) = (2~)-" 6q'~ V' = V - '  Z =  (2rc)" 
q 

V is the system volume. 
To derive an RG equation, one has, first of all, to perform an integra- 

tion over short-wave modes in a partition function. For this purpose, we 
add to the functional (1) the term 

Ho[g] - I  I G~'(q, A)IS(q)[ = (2) 
- 2  q 

where the propagator Go is defined as 

Go(q, A) = q- 2S(q2/A2) (3) 

The function S(x) provides a momentum cutoff on a momentum A. It is 
monotonic with S ( x = 0 ) =  1 and l i m x ~  S(x) xm=O, for any m. In 
particular, the choice of S(x)=O(1-x), where O is the step function, 
provides a sharp cutoff. 

Now let us note that the partition function of a system with the 
functional H = Ho + H~ can be written in the form 

Z-- I D~exp(-H[~]) -- Zo<eXp(--Hl[~])>O,A =-- Zo<w[~] >0,A (4) 
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where 

Z0 = f D ~ e x p ( -  Ho[~]) 

and averaging <-.-)o,A is performed with the Gaussian functional at a 
given value of A. 

The following considerations are based on the fact that the averaging 
over a Gaussian field ~" can be replaced by two independent averages over 
Gaussian fields ~'~ and ~'2, providing ~b = ~1 + ~2 and the sum of the 

correlators Gol(q, A1) = <l~l(q)12).0,A1 and Go2(q, A2)= <lq~2(q)12)o, A2 is 
equal to the correlator of the initial field 

Go(q, A) = < [~(q)[ 2>0, A = Go~( q, A1) + Go2(q, A2) 

Let us choose ~1 so that Go~(q, A1)=Go(q, ( 1 - 4 )  A), where ~ < l. Then 
the value Go2 is small, of the order of 4: 

Go2(q, A2) - Go(q, A) - Gol(q, A~) ~- 4 " A 

h(q) = q-  ZA2 dS(q2/A2) 
dA 2 

aGo(q, A) 
aA - 2~h(q) 

(5) 

In this case the integration over the field ~b2 in Eq. (4) can be performed 
easily: 

Z : Zo< wEq~ ] >o,A = Zo<(1 + r w j ]  >o,A(,-~) (6) 

The operator s in Eq. (6) is defined by the relationship 

fq (~2 s = h(q) 6 ~ ( q ) . ~ ' ( - q )  (7) 

The RG transformation will be completed by changing the momentum 
scale in order to restore the initial value of the parameter A: q = q ' ( l  + ~). 
One should also transform the field ~b(q): 

~b(q) = [1 + #e~(q')] ~'(q') = [1 + ~(eo(q) + qVq)] ~b'(q) (8) 

If one chooses er (d+2)/2, then the functional Ho will be restored. 
This results in the following equation: 

w' [ f ]  -- [ i  + r163 + z~ + s w[6] (9) 
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where 

and the operator 

/ d +  2 8 ) 6 
/2B---~--~+q~qq ~(q)" ~(q) (10) 

8 
L v = d V  - 

8V 

appears due to the transformation of the volume of the system. 
From Eq. (9) we obtain 

OH, [d+2-  ar l 6H, [~] f l , [ ~ ]  = dV-g-~ + Iq + q .  �9 = 
~ - -  ~b(q) --~-q ~ 6~b(q) 

[ l + Iq h(q)L~.(q).  ~ . ( -  q ) ~ b i q )  ---~-_-~_ j (11) 

Equation (11) is an exact RG equation. It differs slightly from the equation 
obtained in refs. 12-15. One can obtain all known results of RG theory 
using this relation. However, this equation is not convenient for practical 
uses. As with Wilson's equation, it contains redundant operators (15) which 
should be properly excluded to obtain results having physical meaning. 
Now we are going to obtain an equation free of this substantial drawback. 
It is not necessary to restore the initial functional. If one is not restricted 
to choosing the constant (d+ 2)/2 for the function %(q), then an additional 
term will appear in Eq. (11). Still this will be an exact RG equation. Let us 
define %(q) as 

d+2  
%(q)= 2 - q(q) 

Then instead of Eq. (9) we have 

[ ( 'L w'[~*]= 1+#  / 2 A + s  tl(q)Go'(q,A)l~(q)L = 

where the operator s is defined as 

2 "--~-q ] 6~(q) 
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Using Eqs. (12), (4), (7), and (13), we find 

_ _  _ !  I~IzE~ "] : gd ~ol[~3 -~---~ tl(q) f q(q) Gol(q, A)l~'(q)j 2 
~?V 2 q 

+ d + 2 - t/(q) g(q) + q . = 
2 Oq ] c~b(q) 

+ fq h(q)[ _(}2HI[_. ~]-" (}HI[$] . 3 / /1 [$ ] ]  (14) 
L6~b(q).6~b(-q) 6 5 ( - q )  a~b(q)A 

Again we have obtained the exact RG equation. This equation is a 
generalized form of Eq. (11). Equation (14) contains an arbitrary function 
~/(q) which allows one to exclude redundant operators from a set of RG 
eigenoperators. The presence of this function was essentially explored by 
authors to construct a new small-parameter perturbation theory for phase 
transitions.(~73 When r/(q)= 0, Eq. (14) immediately reduces to Eq. (11). In 
the rest of this section we show how the function ~/(q) can be used to 
eliminate the generation of a momentum-dependent part of the vertex g2(q) 
is the RG equation. That makes the definition of the RG transformation 
unique because it forbids changes of the nonlocal part of the initial 
Hamiltonian. This procedure not only excludes redundant operators, but 
also defines the value of t/(q), leaving no free parameters in the theory. 

Let us separate terms of zeroth and first order in ~2 in the functional 
HI: 

H , [ $ ] = b V + ~  ga(q) lq~(q)12+H ' (15) 

Then, for a renormalization of the constant b, one obtains the simple 
equation 

�9 1 

b = db +-~ fq q(q) + n fq h(q) gl(q) (16) 

The equation for gx(q) has the form 

2 0 '21(q)=-t l (q)Gol(q,A)+I2-q(q)-2q ~q2]g1(q)+Q(q)-2h(q)g~(q) 

(17) 

where the function Q(q) is given by 

Q(q) = fp h(p)[ng2(-p, p; - q ,  q) + 2g2(-p, q; p~ - q ) ]  (18) 

822/66/:3-4-30 
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Now let us separate the part  dependent on momenta  from the vertex 
gl(q)  = glo + g'~(q). Equations for glo and g'~(q) can be written in the form 

glo = [ 2 -  r/(0)] g~o+ Q ( 0 ) -  2h(0) g~o (19) 

~,'t(q) = - r l (q )  Go l (q ,  A ) -  [ q ( q ) -  q(0)] g~o + Q ( q ) -  Q(O) 

- 2 [ h ( q ) - h ( O ) ]  g~o+2q 2 Og'l(q) 2h(q) g'12(q) (20) 0q 2 

Our objective is to eliminate the generation of the q-dependent part  of the 
vertex gl in the R G  equation provided that its initial value does not 
depend on momentum [i.e., ~'~(q)=0, g ' l ( q ) = 0 ] .  Using Eq. (20), we can 
easily find the function ~/(q) which ensures such behavior, 

D(q)  - D(O) + rl(O) Go~(q, A )  
(21) 

~(q)  = ~(0) - a o ' ( q ,  A)  - g~o 

where D(q) = Q(q) - 2h(q) g~o. In addition, if we demand that 

dD(q) (22) 
~ ( 0 ) :  dq 2 q=o 

then the expansion of r/(q) will start from q4. Now the function q(q) 
depends on all higher vertices and has clear physical meaning: at a stable 
fixed point (critical behavior) q*(0) is equal to the Fisher exponent. 
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